Betti numbers of strongly color-stable ideals and squarefree strongly color-stable ideals
نویسندگان
چکیده
منابع مشابه
Betti numbers of strongly color-stable ideals and squarefree strongly color-stable ideals
In this paper, we will show that the color-squarefree operation does not change the graded Betti numbers of strongly color-stable ideals. In addition, we will give an example of a nonpure balanced complex which shows that colored algebraic shifting, which was introduced by Babson and Novik, does not always preserve the dimension of reduced homology groups of balanced simplicial complexes.
متن کاملMinimal Graded Betti Numbers and Stable Ideals
Let k be a field, and let R = k[x1, x2, x3]. Given a Hilbert function H for a cyclic module over R, we give an algorithm to produce a stable ideal I such that R/I has Hilbert function H and uniquely minimal graded Betti numbers among all R/J with the same Hilbert function, where J is another stable ideal in R. We also show that such an algorithm is impossible in more variables and disprove a re...
متن کاملStanley Filtrations and Strongly Stable Ideals
We give a new short proof of the fact that the CastelnuovoMumford regularity of a strongly stable ideal is the highest degree of a minimal monomial generator. Our proof depends on results due to D. Maclagan and G. Smith on multigraded regularity. More precisely, we construct a Stanley filtration for strongly stable ideals which provides a bound for the Castelnuovo-Mumford regularity.
متن کاملStrongly stable ideals and Hilbert polynomials
Strongly stable ideals are a key tool in commutative algebra and algebraic geometry. These ideals have nice combinatorial properties that makes them well suited for both theoretical and computational applications. In the case of polynomial rings with coefficients in a field with characteristic zero, the notion of strongly stable ideals coincides with the notion of Borel-fixed ideals. Ideals of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebraic Combinatorics
سال: 2007
ISSN: 0925-9899,1572-9192
DOI: 10.1007/s10801-007-0095-y